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Abstract

We present the unique solution to the quantum Battle of the Sexes game. We
show the best result to be achieved when the game is played according to
Marinatto and Weber’s scheme. The result which we put forward does not
surrender the criticism of previous works on the same topic.

PACS numbers: 03.67.−a, 02.50.Le

1. Introduction

Theory of games concerns the description of conflict situations between two or more
individuals, usually called players.

For about the last 10 years, next to the classical theory of games, a new field of
investigation—quantum games [1]—has been developing. It represents an extension of
traditional theory of games into the field of quantum mechanics (quantum information).
In quantum games, players have access to strategies which are not encountered in the
‘macroscopic world’. This phenomenon leads to new and interesting results which may
be attained by players equipped with quantum strategies [2–4].

1.1. Battle of the Sexes game

The Battle of the Sexes is a static two-player game of nonzero sum whose matrix representation
is as follows:

q = 1 q = 0

� :
p = 1
p = 0

[
(α, β) (γ, γ )

(γ, γ ) (β, α)

]
, where α > β > γ.

(1)

Characteristic for the Battle of the Sexes game are three Nash equilibria: one is found in
mixed strategies, and the other two in pure strategies. The first player prefers equilibrium
(1, 1) which yields him the payoff α. In turn, the second player, in order to get the payoff α,
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prefers (0, 0). The problem of opposing expectations of the two players constitutes a definite
dilemma. The players, following their preferences, may play a strategy profile (1, 0) that gives
them the payoff γ —the worst payoff in the game.

1.2. The model of the quantum game

The quantum model of a two-player static game (the game in which each player chooses
their strategy once, and the choices of all players are made simultaneously) is a family
(H, ρin, UA,UB,�A,�B) [3]. In such a model, H is the underlying Hilbert space of the
physical system used to play a game, and ρin is the initial state of this system. Sets of
strategies of two players are sets UA and UB of unitary operators by which players can act on
ρin. The symbols �A and �B mean the preference relation for the first and the second player,
respectively, which can be replaced by the payoff function. The first scheme for playing a
quantum 2 × 2 game in which both players have access to ‘quantum’ strategies appeared
in [5]. In this model, Hilbert space H is defined as C2 ⊗ C2. The players apply unitary
operators acting on C2 which depend on two parameters. The initial state ρin is taken to be a
maximally entangled state of two qubits. Marinatto and Weber [6] introduced a new scheme
for quantizing 2 × 2 games. In contrast to the scheme proposed in [5], they restricted players’
actions to applying an identity operator I or a Pauli operator σx , or any probabilistic mixture of
I and σx . This limitation of unitary operators can lead to the situation in which the players are
even unable to state whether they play a game in the classical or in the quantum form [7]. For
this reason, Marinatto and Weber’s scheme seems to be the more natural way for quantizing
games. In the following section, we give a precise description of this scheme.

2. General Marinatto–Weber scheme

In the Marinatto–Weber scheme of playing 2 × 2 quantum games, a space state of a game is
the 2 ⊗ 2-dimensional complex Hilbert space with a base (|00〉, |01〉, |10〉, |11〉). The initial
state of a game is |ψin〉 = a00|00〉+a01|01〉+a10|10〉+a11|11〉 and I, C = σx are, respectively,
identity and bit-flip operators. Players are able to manipulate the initial state |ψin〉 by acting
by I or C on the first and the second entry in the ket | · ·〉, respectively. According to the idea
of mixed strategies, they can also apply, respectively, pI + (1 − p)C, qI + (1 − q)C, where
0 � p, q � 1. If the language of density matrices is used, then ρin = |ψin〉〈ψin| and the final
state of the game is as follows:

ρfin = pqI1 ⊗ I2ρinI1 ⊗ I2 + p(1 − q)I1 ⊗ C2ρinI1 ⊗ C2

+ (1 − p)qC1 ⊗ I2ρinC1 ⊗ I2 + (1 − p)(1 − q)C1 ⊗ C2ρinC1 ⊗ C2. (2)

When the original classical game is defined by a bi-matrix,

q = 1 q = 0

	 :
p = 1
p = 0

[
(x11, y11) (x12, y12)

(x21, y21) (x22, y22)

]
,

(3)

the payoff operators are

PA = x11|00〉〈00| + x12|01〉〈01| + x21|10〉〈10| + x22|11〉〈11|, (4)

PB = y11|00〉〈00| + y12|01〉〈01| + y21|10〉〈10| + y22|11〉〈11|. (5)

The payoff functions πA and πB can then be obtained as mean values of the above operators:

πA = Tr{PAρfin}, πB = Tr{PBρfin}. (6)
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After applying the procedure discussed above, the quantum equivalent of the classical game 	

(3) is characterized by a two-dimensional bi-matrix 	Q, the elements of which are specified
as a product of two matrices:

π(i, j) = (|ai⊕21,j⊕21|2 |ai⊕21,j |2 |ai,j⊕21|2 |aij |2)(X, Y ), (7)

where π(i, j) = (πA(i, j), πB(i, j)), i, j ∈ {0, 1},⊕2 means addition modulo 2 and (X, Y ) =
((x11, y11) (x12, y12) (x21, y21) (x22, y22))

T .
In the special case when |ψin〉 = |00〉 an equality 	 = 	Q occurs.

3. Various attempts at solving the dilemma of the quantum Battle of the Sexes game

The history of efforts put into the quantum solution to the dilemma that unavoidably occurs
in the classical Battle of the Sexes began in [6], where a scheme of playing quantum games
alternative to the scheme proposed in [5] was published. Marinatto and Weber showed
that the players who have access to quantum strategies may gain the same payoff in every
equilibrium. If the initial state of the game is |ψin〉 = (|00〉 + |11〉)/√2 then instead of (α, β)

or (β, α), respectively, they obtain ((α + β)/2, (α + β)/2)) for strategy profiles (1, 1) and
(0, 0). Equalization of payoffs for players obtained in both equilibria certainly eliminates
the difference between preferences of the players but, as Benjamin [8] correctly stated, the
dilemma still exists. In spite of the fact that both players prefer two equilibria to the same
extent, there is still a possibility that because of lack of communication between both players
they may obtain the worst payoff γ , which happens when they play combinations of strategies
(1, 0) or (0, 1).

Further improvement in solving the dilemma of the Battle of the Sexes game (1) was
presented by Nawaz and Toor in [9]. They improved the results of [6] considering the
quantum game Battle of the Sexes that begins with the initial state |ψin〉 = (

√
5eiφ1 |00〉 +√

5eiφ2 |01〉 + eiφ3 |10〉 +
√

5eiφ4 |11〉)/4 and showing that it is equivalent to the classical game
characterized by the following payoff bi-matrix:

�NT = 1

16

[
(α′, α′) (β ′, γ ′)
(γ ′, β ′) (α′, α′)

]
, (8)

where α′ = 5α + 5β + 6γ, β ′ = 5α + β + 10γ, γ ′ = α + 5β + 10γ . Then they argued that each
player should choose their first strategy. It can easily be observed that [9] improved results of
[6]. For any α, β, γ where α > β > γ , it is better for both players to play ‘Nawaz and Toor’s
game’ than ‘Marinatto and Weber’s game’: in [6], if players choose their strategies 1 or 0 at
random, they gain with equal probability (α + β)/2 and γ , which gives them the expected
value (α + β + 2γ )/4—a result which is always worse than (5α + 5β + 6γ )/16. However, the
question arises whether Nawaz and Toor’s result is the best result which players can guarantee
themselves in the quantum Battle of the Sexes game.

4. The Harsanyi–Selten algorithm of equilibrium selection

The algorithm of choosing equilibrium presented below is described in a renowned book by
Nobel prize winners Harsanyi and Selten [10]. Its aim is to select in each 2 × 2 game with
two strong equilibria only one of them or the equilibrium in mixed strategies.

To demonstrate an operation of the algorithm, let us consider the following 2 × 2 game:

q = 1 q = 0

� :
p = 1
p = 0

[
(a11, b11) (a12, b12)

(a21, b21) (a22, b22)

]
(9)
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and denote by u1 = a11 − a21, v1 = a22 − a12, u2 = b11 − b12, v2 = b22 − b21. Furthermore,
let us assume that the pairs of pure strategies (1, 1), (0, 0) form strong equilibria (an analogous
criterion can be formulated for equilibria placed on the second diagonal). Then there exists also
the third equilibrium (s1, s2) in mixed strategies, where s1 = v2/(u2 + v2), s2 = v1/(u1 + v1).

Algorithm 1. From three equilibria the one which dominates according to payoffs, i.e. the
one in which both players receive the largest payoffs, should be chosen. If this is not a case,
then the equilibrium should be chosen according to the following formula:

(r1, r2) =
⎧⎨
⎩

(1, 1), if u1u2 > v1v2

(0, 0), if u1u2 < v1v2

(s1, s2), if u1u2 = v1v2.

(10)

Such a strategy pair is called a risk-dominant equilibrium [10].
It is important to note that the given algorithm is not contradictory to individual rationality.

The algorithm should not be treated as an oracle which gives players unjustified hints which
are in conflict with common sense. The criterion entirely reflects rational behavior of the
players (see comments in [10]).

In order to see how this algorithm works, we apply it to the quantum version of the game
the Battle of the Sexes studied by Nawaz and Toor in [9] and described by the payoff bi-matrix
�NT (8).

It can easily be noted that the game �NT has three equilibria but none of them is dominant
according to payoffs. Since u1 = u2 = 4(α − γ ) and v1 = v2 = 4(β − γ ), we get
u1u2 = 16(α − γ )2 > 16(β − γ )2 = v1v2. Therefore, according to the rule given by the
Harsanyi and Selten’s algorithm, players should choose the equilibrium (1, 1)—a strategy pair
which also Nawaz and Toor consider as the only rational solution in this game.

5. Dilemma of the Battle of the Sexes overcome

In the previous section, we presented the algorithm of equilibrium selection which should be
adopted by rational players for 2 × 2 games with two strong equilibria. The quantum game
begins when players receive the initial state and at this stage there is a need to define precisely
its shape. The lemma below will allow one to use the Harsanyi–Selten algorithm and also to
equalize players’ preferences.

Let an initial state |ψin〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉 of a quantum Battle of
the Sexes game played according to the Marinatto–Weber scheme be given. Then the original
classical game � (1) transforms into the game �′ such that the following lemma holds:

Lemma 5.1. If |a00|2 = |a11|2 = 1
2 (1 − (ε1 + ε2)), |a01|2 = ε1, |a10|2 = ε2, where ε1 +

ε2 � 1 − 2 max{ε1, ε2} for ε1 
= ε2 and ε < 1/4 for ε1 = ε2 = ε, then for any real numbers
α > β > γ :

(a) a game �′ is identical to � with respect to strategy profiles which constitute Nash equilibria
in pure strategies and with respect to the number of equilibria,

(b) payoff functions π ′
A, π ′

B of the quantum game �′ fulfil the condition: π ′
A(r1, r2) =

π ′
B(r1, r2) for all equilibria (r1, r2) of the game �′.

Proof. Insert |a00|2 = |a11|2 = 1
2 (1 − (ε1 + ε2)), |a01|2 = ε1, |a10|2 = ε2 into formula (7).

Taking into account assumptions of the lemma about the sum ε1 + ε2 we obtain

π ′
A(1, 1) − π ′

A(0, 1) = π ′
B(1, 1) − π ′

B(1, 0)

= (α − γ )
(

1
2 (1 − (ε1 + ε2)) − ε2

)
+ (β − γ )

(
1
2 (1 − (ε1 + ε2)) − ε1

)
> 0. (11)
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Similarly,

π ′
A(0, 0) − π ′

A(1, 0) = π ′
B(0, 0) − π ′

B(0, 1)

= (α − γ )
(

1
2 (1 − (ε1 + ε2)) − ε1

)
+ (β − γ )

(
1
2 (1 − (ε1 + ε2)) − ε2

)
> 0. (12)

�

We infer from this result that pairs (1, 1), (0, 0) form Nash equilibria, and none of the strategies
is weakly dominated. Therefore, the game �′ also possesses an equilibrium in mixed strategies.

Furthermore, it can easily be observed that π ′
A(1, 1) = π ′

B(1, 1) = π ′
A(0, 0) = π ′

B(0, 0).
Let us mark the third equilibrium of the game �′ by (s1, s2). Due to u1 = u2 and
v1 = v2, we obtain equality (s1, s2) = (s1, s1) = (s2, s2). Therefore, besides the equalities
π ′

A(1, 0) = π ′
B(0, 1) and π ′

A(0, 1) = π ′
B(1, 0), we get π ′

A(s1, s2) = π ′
B(s1, s2).

The essential assumptions of the lemma are not condito sine qua non to fulfil the thesis.
Taking into consideration, for example, another initial state: |ψin〉 = a01|00〉 + a00|01〉 +
a11|10〉 + a10|11〉 one obtains a game which is identical to �′ up to relabeling of strategies of
one of the players. Moreover, the assumption ε1 + ε2 � 1 − 2 max{ε1, ε2} can be weakened.
The assumptions define the form of the initial state for the quantum Battle of the Sexes game
with any α > β > γ . The necessary and sufficient condition for inequalities (11) and (12) to
be true requires dependence of ε1 and ε2 on α, β and γ . However, for simplifying the results,
we will not go into details of this problem. As we will note further, the most important for our
study are only the values of (ε1, ε2) in the neighborhood of (0, 0).

One of the characteristic features of both the classical game the Battle of the Sexes
and any of its quantum versions is the lack of any equilibria which are dominating
according to payoffs. However, the following theorem states that when assumptions of
the lemma are fulfilled, then in the quantum version of this game a risk-dominant equilibrium
exists.

Theorem 5.2. If the quantum version �′ of the game � fulfils assumptions of the lemma, then
its risk-dominant equilibrium is the strategy profile:

(r1, r2) =
⎧⎨
⎩

(1, 1), when ε1 > ε2

(0, 0), when ε1 < ε2

(1/2, 1/2), when ε1 = ε2.

(13)

Proof. Let us calculate u1u2 and v1v2 from the algorithm and estimate the difference,
u1u2 − v1v2:

u1u2 = [
(α − γ )

(
1
2 (1 − (ε1 + ε2)) − ε2

)
+ (β − γ )

(
1
2 (1 − (ε1 + ε2)) − ε1

)]2
,

v1v2 = [
(α − γ )

(
1
2 (1 − (ε1 + ε2)) − ε1

)
+ (β − γ )

(
1
2 (1 − (ε1 + ε2)) − ε2

)]2
,

consequently,

u1u2 − v1v2 = (α + β − 2γ )(α − β)(1 − 2(ε1 + ε2))(ε1 − ε2). �

The first and second elements of the product are surely positive. Due to the assumption of
the lemma, 1 − 2(ε1 + ε2) is also positive. Therefore, the sign of the difference, u1u2 − v1v2,
depends only on the sign of the difference, ε1 − ε2.

In the case when ε1 = ε2, the game �′ is characterized by the following equalities:

π ′
A(r1, r2) = π ′

B(r1, r2) for all (r1, r2),

π ′(i, j) = π ′(i ⊕2 1, j ⊕2 1) for all i, j ∈ {0, 1}
5
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which imply that Nash equilibrium in mixed strategies is formed by a pair of strategies
(1/2, 1/2).

The initial state is known to the players; so according to the theorem it determines all
the development of the game. The values of the payoff function corresponding to (13) are as
follows:

π ′
A,B(r1, r2) =

⎧⎪⎨
⎪⎩

1
2 [(α + β) − (α + β − 2γ )(ε1 + ε2)] , when ε1 > ε2

1
2 [(α + β) − (α + β − 2γ )(ε1 + ε2)] , when ε1 < ε2

1
4 (α + β + 2γ ), when ε1 = ε2.

(14)

The payoff function depends only on the values of ε1, ε2; thus it can be identified with a
function of two variables ε1 and ε2:

π ′
A,B(ε1, ε2) =

{
1
2 [(α + β) − (α + β − 2γ )(ε1 + ε2)] , when ε1 
= ε2

1
4 (α + β + 2γ ), when ε1 = ε2.

(15)

This function is composed of two linear functions with variables ε1, ε2. Let us examine its
limit:

lim
(ε1,ε2)→(0,0)+

π ′
A,B(ε1, ε2) =

{
1
2 (α + β), when ε1 
= ε2

1
4 (α + β + 2γ ), when ε1 = ε2.

(16)

It follows that

sup
ε1,ε2

π ′
A,B(ε1, ε2) = 1

2 (α + β). (17)

The maximum value of the function π ′
A,B(ε1, ε2) (15) does not exist, but for any small positive

value δ an arbiter is able to prepare the initial state with sufficiently small ε1, ε2 that are
different from each other in such a way that payoffs of players differ from 1

2 (α + β) by less
than δ. This means that in the quantum Battle of the Sexes game both players may obtain
equal payoffs arbitrary close to 1

2 (α + β).

Example 5.3. If (α, β, γ ) = (5, 3, 1), then according to the result of Nawaz and Toor,
each player gets payoff 2.875 while our formula yields for an initial state of the game
characterized by |a01|2 = ε1 = 0.01, |a10|2 = ε2 = 0.02 and |a00|2 = |a11|2 = 0.485
payoffs [(5 + 3) − 0.03(5 + 3 − 2)]/2 = 3.91.

6. Conclusions

We obtained a new result in the quantum Battle of the Sexes game played according to the
Marinatto–Weber scheme. In contrast to [6], we considered the initial state of the game to be
the most general state of two qubits. We put conditions for amplitudes of the initial state so that
the quantum form of the Battle of the Sexes game (1) has identical strategic positions of players
as the initial game. In contrast to [9], we did not select a particular initial state, but we examined
the dependence of players’ payoffs on amplitudes of base states that form the initial state of the
game. Our research showed that the initial state |ψin〉 = a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉
from [9] characterized by |a00|2 = |a11|2 = |a01|2 = 5/16, |a10|2 = 1/16 is one of many
initial states that can be prepared without losing any characteristic feature of the classical
Battle of the Sexes game. Moreover, we discovered infinitely more initial states for which
players can achieve higher payoffs than by means of Nawaz and Toor’s initial state. This
allowed us to determine the supremum of the payoffs’ values. This quantum version assures
that its participants can get payoffs arbitrarily close to the equal for both players’ maximal
payoff possible in the game: 1

2 (α + β), which is the highest value that can be obtained in the
‘classical’ game if and only if players are allowed to communicate.
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